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ABSTRACT Chronic neuroinflammation is observed in HIV™ individuals on suppres-
sive combination antiretroviral therapy (cART) and is thought to cause HIV-associated
neurocognitive disorders. We recently reported that expression of HIV intron-contain-
ing RNA (icRNA) in productively infected monocyte-derived macrophages induces
proinflammatory responses. Microglia, yolk sac-derived brain-resident tissue macro-
phages, are the primary HIV-T-infected cell type in the central nervous system (CNS).
In this study, we tested the hypothesis that persistent expression of HIV icRNA in pri-
mary human microglia induces innate immune activation. We established multiple
orthogonal primary human microglia-like cell cultures, including peripheral blood
monocyte-derived microglia (MDMG) and induced pluripotent stem cell (iPSC)-
derived microglia. Unlike MDMG, human iPSC-derived microglia (hiMG), which phe-
notypically mimic primary CNS microglia, were robustly infected with replication-
competent HIV-1, and establishment of productive HIV-1 infection and de novo viral
gene expression led to proinflammatory cytokine production. Blocking of HIV-1
icRNA expression, but not multiply spliced viral RNA, via either infection with virus
expressing a Rev-mutant deficient for HIV icRNA nuclear export or infection in the
presence of a small molecule inhibitor of the chromosome region maintenance 1
(CRM1)-mediated viral icRNA nuclear export pathway attenuated induction of innate
immune responses. These studies suggest that Rev-CRM1-dependent nuclear export
and cytosolic sensing of HIV-1 icRNA induces proinflammatory responses in produc-
tively infected microglia. Novel strategies targeting HIV icRNA expression specifically
are needed to suppress HIV-induced neuroinflammation.

IMPORTANCE Although peripheral viremia can be effectively suppressed with the
advent of highly active antiretroviral therapy, a significant portion of HIV* individuals
still suffer from neurocognitive disorders. Despite suppressive therapy, HIV persists in
various tissues, including the central nervous system (CNS), leading to chronic
inflammation, the chief driver of neurocognitive disorders. While persistent infection
has been described in CNS-resident macrophages and microglia, molecular mecha-
nisms of how HIV infection in microglia contributes to neuronal inflammation have
remained unclear. In this study, we used multiple primary human microglia-like cellu-
lar platforms and demonstrate that HIV-1 intron-containing RNA induces microglial
activation and damage. Since current antiretroviral therapy does not suppress HIV-1
transcription, new therapeutics targeting HIV RNA expression may help to treat HIV-
associated neurocognitive disorders.
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ince the advent of combination antiretroviral therapy (cART), mortality and morbid-
ity of HIV-1 infection has been dramatically reduced. Although prolonged cART can
suppress peripheral viremia in HIV* individuals under the detection limit for decades,
these therapeutic regimens fail to suppress chronic immune activation, the chief driver
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of HIV-associated non-AIDS complications (HANA), including HIV-associated neurocog-
nitive disorders (HAND) (1, 2). Numerous studies have demonstrated that inflammatory
markers associated with myeloid cell activation are strongly and selectively predictive
of HAND (3). In vivo, persistent HIV infection has been reported in the central nervous
system (CNS)-resident macrophages, including perivascular macrophages and micro-
glia (4-7). However, molecular mechanisms of how HIV infection in the CNS-resident
macrophages contributes to chronic immune activation have remained unclear.

Recently, we showed that expression and Rev-CRM1-dependent nuclear export of
HIV intron-containing RNA (icRNA) in productively infected peripheral blood mono-
cyte-derived macrophages (MDMs) is the trigger to induce type | interferon (IFN-I)-de-
pendent production of proinflammatory cytokines even in the absence of new viral
particle production (8). Similar findings have also been reported for monocyte-derived
dendritic cells (9), suggesting HIV icRNA expression-induced innate immune activation
might be a conserved phenotype in myeloid cells. Numerous studies have docu-
mented the continued presence of HIV RNA in the cerebrospinal fluid (CSF) even after
prolonged cART (3, 10-12). Since cART regimens as constituted presently cannot sup-
press viral RNA expression from integrated proviruses, it is plausible that persistent
expression of HIV icRNA in the CNS-resident microglia and perivascular macrophages
contributes to the chronic inflammatory state in the brain of HIV* individuals on cART.

Productively infected microglia can contribute to virus persistence and CNS pathol-
ogy during HIV-1 infection (4, 13), though the extent to which these reservoirs persist
and the mechanisms that might allow for virus persistence in these cells in patients on
cART remain unclear. HIV infection of microglia has been shown to impact microglial
functions, including activation status, viability, and metabolism (14). In addition,
changes in microglial functions have been postulated to contribute to neuropathogen-
esis by secreting proinflammatory cytokines and neurotoxins (15). Activated microglia
are also known to cause neurodegeneration directly by damaging synapses or indi-
rectly via activation of other CNS-resident cells such as astrocytes (reviewed in refer-
ence 16). Microglia play a pivotal role in maintaining brain homeostasis, and microglial
dysfunction caused by HIV infection is thought to impact CNS functionality of HIV*
individuals on suppressive cART. To date, several mechanisms have been proposed to
explain how HIV induces microglia activation. For example, the HIV proteins Tat,
gp120, Nef, and Vpr have been shown to activate microglia, leading to alterations in
microglial functions and neuronal health (reviewed in reference 14). However, the
physiological relevance of these findings needs to be carefully considered, since most
of the studies used overexpression of viral proteins or transgenic rodents. Whether
such high concentrations of these viral proteins are observed in the CNS of HIV*
patients on suppressive therapy requires further investigation. While HIV infection of
primary human fetal microglia has been reported (17, 18), these cells are not easily ac-
cessible, which precludes detailed investigations of the molecular mechanisms of HIV-
induced innate immune activation. Overall, the molecular mechanisms of HIV-induced
microglia activation in the CNS remain unclear.

In this study, we investigate the role of HIV-1 infection of microglia in promoting
neuroinflammation using two model systems, primary monocyte-derived microglia
(MDMG) and induced pluripotent stem cell (iPSC)-derived microglia (iCell-MG and
hiMG). We report that while HIV-1 infection of MDMGs is attenuated, restriction to
infection was alleviated upon SAM domain and HD domain-containing protein 1
(SAMHD1) degradation. In contrast, both iCell-MGs and hiMGs were robustly infected
with wild-type HIV-1, and innate immune activation in these cells was triggered by de
novo expression and nuclear export of icRNA via the Rev-CRM1-dependent pathway.

RESULTS

MDMG model of HIV-1 infection in microglia. HIV-1 infection of primary human
fetal microglia has been reported (17, 18), though these cells are not easily accessible
due to ethical and technical issues. To overcome these limitations, microglia-like cells
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FIG 1 Monocyte-derived microglia (MDMG) are susceptible to HIV-1 infection. (A) Schematic of MDMG
differentiation protocol. (B) Representative image of MDMs or MDMGs differentiated from the same donor.
Bars=20um. (C and D) Expression of (C) P2RY12 and (D) GAS6 mRNA in MDMGs was quantified by reverse
transcription-quantitative PCR (qQRT-PCR) and normalized to that of MDM generated from the same donor. (E)
Representative immunofluorescence images of MDMGs stained for nucleus (DAPI, blue) and P2RY12 or IBA-1
(red). Bar =20 um. (F) MDMGs were infected with Lai/YU-2env (replication-competent CCR5-tropic HIV-1, MOI=1),
and production of p24%%9 in the culture supernatant was quantified by ELISA (3days postinfection [dpi]). (G)
Western blot analysis for total SAMHD1, phosphorylated SAMHD1 expression in MDMGs, MDMs and THP-1 cells.
Actin was probed as a loading control. +, PMA-treated THP-1; —, unstimulated THP-1. (H) MDMGs and MDMs
were infected with HIV-1 (LaiAenvGFP/VSV-G, MOI=2, in the absence or presence of SIV, 239 Vpx VLPs), and
production of p24%% in the culture supernatant was quantified by ELISA (3dpi). NT, no treatment (DMSO); EFV,
efavirenz (1 uM); Ral, raltegravir (30 ©M). The means * standard error of the mean (SEM) are shown, and each
symbol represents an independent experiment. P values: one-sample t test (panel C, two-tailed), the Wilcoxon
matched-pairs signed rank test (panel D, two-tailed), or one-way ANOVA followed by the Tukey-Kramer posttest
(panel F) or Dunnett’s posttest comparing to mock (panel H). *, P < 0.05; **, P < 0.01; ***, P<0.001.

have been generated in vitro from monocytes and characterized extensively (19-22).
We derived microglia-like cells from CD14* monocytes by culturing in serum-free con-
ditions in the presence of interleukin-34 (IL-34) and granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Fig. 1A). These cells displayed a unique microglia-like
ramified morphology (Fig. 1B), as previously reported (19, 20). MDMGs have been
shown to display similar morphology to that of human primary microglia and express
genes that are highly or uniquely expressed in human microglia (19-23). In agreement
with these previous findings, expression of P2RY12 and Gas6 mRNAs in MDMGs was
significantly enhanced compared to those in donor-matched monocyte-derived mac-
rophages (MDMs) (Fig. 1C and D). Furthermore, expression of P2RY12 and IBA-1 in
MDMGs was confirmed by immunofluorescence (Fig. 1E). We next examined if MDMGs
were susceptible to HIV-1 infection. MDMGs were infected with replication-competent-
tropic HIV-1 (Lai/YU-2env), and p24%39 secretion in the culture supernatants was
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quantified by enzyme-linked immunosorbent assay (ELISA). While infection of MDMGs
resulted in productive infection and release of progeny virions (Fig. 1F), the amount of
p24%29 in the supernatants was low. Since MDMGs were differentiated from peripheral
blood monocytes in GM-CSF- and IL-34-containing media, and GM-CSF has been
shown to alter the phosphorylation status of SAMHD1 and render MDMs less suscepti-
ble to HIV-1 infection (24), we sought to determine the phosphorylation status of
SAMHD1 in MDMGs. Western blotting demonstrated that while total SAMHD1 levels
were similar, MDMGs expressed significantly reduced levels of phosphorylated
SAMHD1 compared to donor-matched MDMs or THP-1 macrophages (Fig. 1G) (25, 26).
We next infected MDMGs and donor-matched MDMs with HIV-1 in the absence or
presence of the simian immunodeficiency virus of macaques (SIV,,,.) Vpx containing vi-
rus-like particles (VLPs), which degrades SAMHD1 (27, 28) and enhances HIV-1 infection
of myeloid cells (29). In the absence of SIV,,.. Vpx, MDMGs produced a much smaller
amount of p24%29 in the supernatants than MDMs (Fig. TH). Interestingly, pretreatment
of MDMGs with SIV,,,. Vpx VLPs significantly enhanced p24%29 production (Fig. T1H),
suggesting that abundant expression of antiviral SAMHD1 in MDMGs restricts efficient
infection of these cells by HIV-1.

HIV-1 infection induces immune activation in MDMGs. We recently showed that
infection of MDMs with HIV-1 induces interferon | (IFN-I)-dependent proinflammatory
responses (8). To investigate whether HIV-1 infection of microglia induces innate immune
activation, total RNA isolated from HIV-1-infected MDMGs in the presence of SIV,,. Vpx
VLPs was analyzed with a NanoString human neuroinflammation panel that contains
more than 750 target genes covering the core pathways and processes involved in neuro-
inflammation. Among those analyzed, several mRNAs were upregulated in an HIV-1 infec-
tion-specific manner; i.e., upregulation was only seen in HIV-infected untreated MDMGs
but not in reverse transcriptase inhibitor (efavirenz, EFV)- or integrase inhibitor (raltegra-
vir, Ral)-treated MDMGs (Fig. 2A and B and C). Highly upregulated genes (>mean + 2 x
SD) compared to mock-, EFV- or Ral-treated MDMGs are shown in Fig. 2A, B, and C,
respectively, which include interferon-stimulated genes (ISGs) (e.g., Siglec1/CD169,
RSAD2) and proinflammatory cytokines (e.g., CXCL10/IP-10, CCL7/MCP-3). To confirm the
results from NanoString analysis, IP-10 production in the MDMG culture supernatants was
measured by ELISA. We found that IP-10 production was induced upon infection of
MDMGs with HIV-1, which was inhibited upon pretreatment of MDMGs with EFV or Ral
(Fig. 2D). HIV-1 intron-containing RNA (icRNA) export into cytosol via the Rev-CRM1-de-
pendent pathway has previously been shown to induce innate immune activation in
MDMs and dendritic cells (8, 9). To investigate the role of HIV-1 icRNA export by the Rev-
CRM1-dependent pathway in MDMG innate activation, HIV-1 infected MDMGs were
treated with a CRM1 inhibitor (KPT-330, selinexor), or MDMGs were infected by an HIV-1
Rev-deficient (dominant negative) mutant (M10) (8, 30). While establishment of infection
of MDMGs and HIV-1 multiply spliced RNA expression was not affected by KPT treatment
or M10 infection (Fig. 2E), production of p24%29 which is transcribed from icRNA, was com-
pletely inhibited by KPT-330 treatment or in M10-infected MDMGs (Fig. 2F). Interestingly,
expression of IP-10 mRNA was severely reduced in HIV-1-infected MDMGs upon KPT-330
treatment or in M10-infected MDMGs (Fig. 2G). These results suggest that innate immune
activation of MDMGs upon HIV-1 infection requires cytoplasmic expression of HIV icRNA
exported via the Rev-CRM1-dependent pathway.

iPSC-derived microglia are highly susceptible to HIV-1 infection. Fate mapping
analysis suggests that microglia in the brain originate from yolk-sac-derived primitive
macrophages during embryonic hematopoiesis (31, 32). Unlike other tissue-resident
macrophages, such as Kupffer cells and alveolar macrophages, microglia are not
replenished with circulating bone marrow-derived monocytes during adulthood
(33-35). To better model HIV-1 infection of human primary microglia, we tested if
human induced pluripotent stem cell (iPSC)-derived microglia can be infected with
HIV-1. We obtained iPSC-derived microglia, iCell microglia (iCell-MG), from a commer-
cial source (Fujifilm Cellular Dynamics), which were generated as previously described
(36). iCell-MGs showed heterogeneous morphology (Fig. 3A) and expressed the
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FIG 2 HIV-1 infection induces innate immune activation in MDMGs. (A) mRNA expression profiles in MDMGs infected with HIV-1
(LaiAenvGFP/VSV-G, MOI =2, in the presence of SIV, ., Vpx VLPs) were analyzed using the human neuroinflammation panel (NanoString). (A
to C) Expression of mRNA in HIV-1-infected MDMGs was normalized to that in mock-infected MDMGs (A), in infected MDMGs in the presence
of (B) efavirenz or (C) raltegravir, and genes which were expressed more than the mean + 2 x standard deviation (SD) are shown. (D)
Production of IP-10 in HIV-1-infected MDMGs (MOI=2, 3 dpi) measured by ELISA. (E to G) Effects of CRM1 inhibitor (KPT-330) on HIV-1-
infected MDMGs or infection of MDMGs with a Rev mutant deficient for icRNA nuclear export (Rev*, M10) on (E) viral infection (multiply
spliced viral RNA expression, Rev-independent, shown as ACT to GAPDH), (F) p24%29 production (Rev-dependent) measured by ELISA, or (G)
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FIG 3 iPSC-derived microglia are highly susceptible to HIV-1 infection. (A) Representative phase-contrast images of iCell-MGs (Fujifilm
Cellular Dynamics). Bar=20um. (B) Representative immunofluorescence image of iCell-MGs stained for nucleus (DAPI, blue) and IBA-1
(red). Bar=20um. (C) Representative flow cytometry profile of iCell-MGs stained for intracellular and surface P2RY12. (D) Western blot
analysis for total SAMHD1, phosphorylated SAMHD1 expression in iCell-MGs, MDMGs, and MDMs. Actin was probed as a loading
control. (E) Replication kinetics of HIV-1 in iCell-MGs. Cells were infected with HIV-1 (Lai/YU-2env, replication competent CCR5 tropic
HIV-1, MOI=1), and production of p24%% in the culture supernatant was quantified by ELISA. (F to H) iCell-MGs were infected with
HIV-1 (Lai/YU-2env, MOI=1), and (F) HIV-1 infection (intracellular p24%29 expression) and (G and H) CD169 expression were analyzed by
flow cytometry. (I and J) Production of the proinflammatory cytokines (I) IP-10 and (J) CCL2 in the culture supernatants was measured
by ELISA (6 dpi). The means = SEM are shown, and each symbol represents an independent experiment. P values: one-way ANOVA
followed by Dunnett’s posttest comparing to mock (panels F and H to J), *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<<0.0001. NT,:
no treatment (DMSO); EFV, efavirenz (1 wM); Ral, raltegravir (30 wM); Ver, verdinexor (KPT-335, 0.1 uM).

macrophage/microglia marker IBA-1 (Fig. 3B). Flow cytometry analysis revealed robust
intracellular expression of the microglia-specific marker P2RY12 and minimal expres-
sion on the cell surface (Fig. 3C). Immunoblotting analysis revealed that, in contrast to
MDMGs, the majority of SAMHD1 was phosphorylated in iCell-MGs (Fig. 3D). We then
infected iCell-MGs with replication-competent CCR5-tropic HIV-1/YU-2 and moni-
tored p24%29 production in the culture supernatants over 15days. We found that
iCell-MGs persistently produced p24%29, which peaked at 6 days postinfection (p.i.)
(Fig. 3E). Intracellular p24%29 staining revealed that about 20% of iCell-MGs in the cul-

FIG 2 Legend (Continued)

IP-10 mRNA expression (shown as ACT to GAPDH). The means * SEM are shown, and each symbol represents an independent experiment.
P values: one-way ANOVA followed by Dunnett’s posttest comparing to mock (panels D to G). *, P<0.05; **, P<0.01; ****, P<0.0001. NT,
no treatment (DMSO); EFV, efavirenz (1 uM); Ral, raltegravir (30 uM); KPT, KPT-330 (Selinexor, 1 uM); Rev*, M10.
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FIG 4 Establishment of iPSC-derived microglia/neuron coculture system. (A) Schematic of hiMG generation by coculturing hiMAC (yolk-sac-derived primitive
macrophages) and neurons from human iPSCs. (B) Representative phase-contrast image of hiMGs and hiNeurons cocultured for 11 days. Bar=50um. (C to
E) Expression of (C) TMEM119, (D) CX3CR1, and (E) P2RY12 mRNA in hiMACs or hiMG-hiNeuron cocultures was quantified by qRT-PCR and normalized to
that of hiNeuron solo culture. P values from one-way ANOVA test for panels C, D, and E were 0.0972, 0.0829, and 0.0814, respectively. (F) Representative
immunofluorescence images of hiMG-hiNeuron cocultures stained for nucleus (DAPI, blue), neuron (tubulin beta 3: TUBB3, green), and MG markers IBA-1 or
TMEM119 (red). Bars=50um. (G) Representative flow cytometry profile of hiMG-hiNeuron coculture stained for neurons (TUBB3) and hiMGs (P2RY12). The
means * SEM are shown, and each symbol represents an independent experiment.

ture were productively infected at 6days p.i. (Fig. 3F). HIV-1 replication in the
infected iCell-MG cultures was inhibited by reverse transcriptase (efavirenz, EFV),
integrase (raltegravir, Ral), and CRM1 (KPT-335, verdinexor) inhibitors (Fig. 3E and F).
To investigate if HIV-1 infection of iCell-MGs induced innate immune activation, we
harvested cells on day 6 p.i. and stained them for CD169, a myeloid-cell-specific ISG
(37, 38). iCell-MGs upregulated CD169 expression upon infection with HIV-1 (Fig. 3G)
on both infected cells and on bystander uninfected cells, suggesting that low levels
of IFN-I were secreted by infected cells, similar to what was observed in HIV-1-
infected MDMs (8). Expression of CD169 was suppressed by pretreatment of iCell-
MGs with RT (EFV), integrase (Ral), and CRM1 (verdinexor) inhibitors (Fig. 3H).
Furthermore, IP-10 and CCL2 production was induced by productive infection of
iCell-MGs by HIV-1 and inhibited upon treatment by EFV, Ral, or verdinexor (Fig. 3l
and J). These results suggest that iPSC-derived microglia are highly susceptible to
HIV-1 infection and that expression and nuclear export of HIV icRNA in infected iCell-
MGs triggers innate immune responses in microglia.

Establishment of iPSC-derived microglia/neuron coculture system. We took
advantage of recent descriptions in the literature of generation of microglia from iPSC
lines (39). Briefly, iPSC-derived human microglia were derived by coculturing iPSC-
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FIG 5 HIV-1 infection of hiMGs in hiMG-hiNeuron cocultures induces proinflammatory responses. hiMG-hiNeuron cocultures
were infected with HIV-1 (Lai/YU-2env: replication-competent CCR5 tropic HIV-1, MOI=1). (A and B) HIV-1 infection
(intracellular p24%39 expression) was analyzed by flow cytometry. (A) Representative flow cytometry profile is shown, and
microglia (P2RY12") and neuron (P2RY127) populations are highlighted with pink and blue, respectively. (B) HIV-infected
(p24%29*) cells in microglia (pink in panel A) were calculated. (C) Replication kinetics of HIV-1 in hiMG-hiNeuron coculture.
Cocultures were infected with HIV-1 (Lai/YU-2env, replication-competent CCR5 tropic HIV-1, MOI=1), and production of
p24%%9 in the culture supernatant was quantified by ELISA. (D and E) Production of proinflammatory cytokines (D) IP-10 and
(E) CCL2 was measured by ELISA (6dpi). (F and G) The proportion of live cells in (F) microglia (pink in panel A) and (G)
neurons (blue in panel A) was calculated. The means *= SEM are shown, and each symbol represents an independent
experiment. P values: one-way ANOVA followed by Dunnett’s posttest comparing to mock (panels B and D to F); **, P<0.01;
*** P <0.001; ****, P<0.0001. The P value from one-way ANOVA test was 0.9662 for panel G. NT, no-treatment (DMSO); EFV,
efavirenz (1 wM); Ral, raltegravir (30 uM); KPT, KPT-330 (selinexor, 1 uM).

derived yolk-sac primitive macrophages (hiMAC) with iPSC-derived neurons (hiNeuron)
(Fig. 4A and B) (39). Cells in the hiMG-hiNeuron cocultures expressed significantly
higher levels of mRNA of the microglia-specific markers TMEM119 (Fig. 4C), CX3CR1
(Fig. 4D), and P2RY12 (Fig. 4E) compared to those in hiNeuron monococulture or in
hiMACs. Immunofluorescence revealed that hiMGs expressed macrophage/microglia
markers (IBA-1 or TMEM119) (39, 40) and made numerous cell-to-cell contacts with
neurons as previously reported (Fig. 4F) (39). P2RY12 was highly expressed on the cell
surface of hiMGs, similar to CNS-resident human microglia (23, 41), and these cells
were clearly distinguishable from hiNeuron (tubulin 83/TUBB3*) by flow cytometry
(Fig. 4G).

HIV-1 infection of hiMGs induces proinflammatory responses. The iMG-
hiNeuron cocultures were infected with replication-competent HIV-1 Lai/YU-2env, and
HIV-1 replication was measured by flow cytometry (intracellular p24529 expression) or
ELISA (p24%29 in the culture supernatants). While hiNeurons were not susceptible to
HIV-1, hiMGs were robustly infected with HIV-1 in hiMG-hiNeuron cocultures (Fig. 5A
and B). Furthermore, establishment of infection in hiMG-hiNeuron cocultures was
blocked by pretreatment with EFV and Ral and anti-CRM1 inhibitor (KPT-330) (Fig. 5B).
We detected increasing amounts of p24%29 in the culture supernatants over time (Fig.
5C), which is suggestive of persistent virus replication in hiMG-hiNeuron cocultures.
HIV-1 infection induced increased production of IP-10 (Fig. 5D) and upregulated CCL2
secretion (Fig. 5E). HIV-1 infection in microglia has been postulated to lead to neuronal
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disorder by disrupting microglia viability and functionality (14). To investigate the
impact of HIV-1 infection on microglial functionality and neuronal toxicity, HIV-1-
infected hiMG-hiNeuron cocultures were analyzed for microglial and neuronal viability
by flow cytometry on day 6 p.i. Interestingly, the proportion of live microglia in the co-
cultures decreased upon HIV-1 infection over time, which was suppressed upon initia-
tion of infections in the presence of HIV-1 inhibitors (EFV and Ral), suggesting that pro-
ductive HIV-1 infection, but not exposure to HIV-1 particles alone, affected hiMG
viability (Fig. 5F). On the other hand, HIV-1 spread in hiMG-hiNeuron cocultures did not
affect the viability of hiNeurons (Fig. 5G). These data suggest that hiMGs in the micro-
glia-neuron cocultures are highly susceptible to HIV-1 infection and that Rev-CRM1-de-
pendent nuclear export of HIV icRNA in microglia triggers secretion of proinflammatory
cytokines, which might contribute to neuroinflammation in vivo.

DISCUSSION

HIV infection and innate immune responses. Chronic inflammation is thought to
be the chief driver of HAND (2, 42, 43), though underlying mechanisms of persistent
neuroinflammation remain unclear. In this study, we demonstrated that HIV-1 infection
of microglia induces innate immune activation, resulting in secretion of proinflamma-
tory cytokines, upregulation of ISGs, and microglia cytotoxicity. Considering their long
life span with self-renewal capacity (31, 44, 45), coupled with the observation that HIV-
1" microglia have been detected in cART-suppressed individuals (4), it is highly plausi-
ble that persistently infected microglia produce proinflammatory cytokines and che-
mokines, such as IFN-I and IP-10, contributing to a chronic state of neuroinflammation.
Previous studies have suggested that IFN-I production contributes to cognitive impair-
ments in HIV-1 infection (46) and neurodegenerative diseases (47, 48). Although multi-
ple roles for chemokines in CNS inflammation have been described, CCL2, specifically,
has been shown to modulate neuronal death in a mouse model (49, 50). Elevated lev-
els of IP-10 have been observed in several neurodegenerative diseases, including in
patients with HAND (51), and are known to affect neuronal viability (52, 53). Since we
did not find obvious neuronal cytotoxicity in hiMG-hiNeuron cocultures in 6 days of
infection, future studies will be focused on long-term cocultures and the consequence
of persistent HIV-1 infection in microglia on neuronal cytotoxicity such as synaptic loss
and dendrite degeneration (54).

HIV icRNA and innate immune responses. While viral proteins such as Tat, Vpr,
and gp120 have been hypothesized to contribute to HIV-associated neuroinflamma-
tion (14), most of these studies relied on overexpression of viral proteins or transgenic
animals. In this study, we showed that HIV-1-infection-induced activation of microglia
in all primary cell culture models was triggered by cytoplasmic export of icRNA, since
infection with HIV expressing a Rev mutant deficient for CRM1 interaction (M10) was
unable to induce innate immune activation (Fig. 2), and CRM1 inhibitors suppressed
HIV-induced activation in microglia (Fig. 2, 3, and 5). We previously showed that HIV
icRNA expression alone induces IFN-I-dependent proinflammatory responses in MDMs,
even though HIV icRNA expression does not lead to production of new virions or func-
tional viral proteins, including gp120 and Vpr (8). Furthermore, the Rev mutant M10,
which fails to induce innate immune activation in microglia, expresses multiply spliced
viral RNAs, including those encoding Tat, suggesting that de novo Tat expression is not
the trigger for HIV-induced microglia activation. Interestingly, HIV icRNA (gag mRNA)
has been detected in the CSF from HIV-1+ individuals on cART (3, 10-12), and a highly
sensitive RNAScope assay has revealed the presence of a significant number of SIV gag
MRNA (icRNA)-positive cells in the brain of cART-suppressed monkeys (55). We postu-
late that these viral icRNA-expressing cells in the brain, which are most likely microglia,
induce proinflammatory cytokines and affect neuronal health in cART-suppressed indi-
viduals. Several drug candidates that suppress expression or stability of HIV icRNA,
such as Tat and Rev inhibitors (56, 57) or inhibitors that selectively target CRM1-de-
pendent nuclear export of HIV icRNA (58), might have clinical benefit for suppressing
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HIV icRNA-induced aberrant inflammation and incidence of HAND in cART-suppressed
patients.

Establishment of primary human microglia culture system for HIV infection
studies. In order to investigate the role of HIV-1 infection of microglia in HIV-1 neuro-
pathogenesis, and to overcome the limited access to primary microglia, we employed
three different in vitro models of primary microglia in this study, MDMG, iCell-MG, and
hiMG. MDMG expressed microglia-specific markers such as P2RY12 and were poorly
susceptible to HIV-1 infection (Fig. 1). Since peripheral blood monocytes are readily ac-
cessible and the protocol for MDMG generation is relatively simple, MDMG is a reason-
able model to study HIV-1 biology in microglia. It should be pointed out that infection
of MDMG with HIV-1 in the absence of SAMHD1 antagonism was inefficient (Fig. 1).
Further optimization of the generation protocol is warranted, for example, using M-
CSF instead of GM-CSF in the differentiation conditions, since GM-CSF has been shown
to induce antiviral SAMHD1 expression in MDMs (24) (Fig. 1G). To better mimic the ori-
gin of microglia (yolk-sac-derived), we used two independent iPSC-derived microglia
lines and tested their susceptibility to replication-competent HIV-1 in vitro. iCell-MGs
are commercially available and expressed microglia markers IBA-1 and P2RY12 (Fig. 3).
It should be noted that in contrast to CNS-resident microglia (23, 41), we observed
mostly intracellular expression of the microglia-specific marker P2RY12 in iCell-MGs
(Fig. 3B). iCell-MGs were highly susceptible to HIV-1 infection (Fig. 3), which is in agree-
ment with previous studies using primary fetal microglia (17). While iCell-MG is a
powerful tool to study HIV-1 infection in microglia, the inability to genetically manipu-
late these cells limits their utility in robust mechanistic approaches.

The third model we used was hiMG-hiNeuron cocultures that were generated from
iPSCs. This system has numerous advantages: (i) hiMGs are highly susceptible to HIV-1
infection (Fig. 5), (ii) establishment of iPSC-derived microglia and neuron cocultures
allows for the study of intricate interactions between diverse cell types in the context
of viral infection and, importantly, the impact of HIV-infection-induced microglia acti-
vation can be assessed on autologous neurons, (iii) the purinergic receptor, P2RY12,
which detects extracellular nucleotides accompanied with CNS injury and regulates
microglial homeostasis (41, 59, 60) and plays an important role in communicating with
neighboring neurons to protect their functions (61), is robustly expressed on the hiMG
cell surface (in contrast to the mostly intracellular expression of P2RY12 in iCell-MGs),
(iv) iPSCs are amenable to gene-editing approaches (62), and (v) iPSC lines generated
from somatic cells of various individuals, including HIV-infected patients, make possible
studies of HIV infection of microglia from unique genetic backgrounds and their contri-
bution to human disease. A recently published study (while the manuscript was in
preparation) described a new cellular platform that consists of iPSC-derived microglia,
neurons, and astrocyte tri-cultures (63) and showed that HIV-1 infection of iPSC-micro-
glia in isolation or in tri-cultures resulted in production of proinflammatory cytokines,
including IL-18 and tumor necrosis factor alpha (TNF-a). Though the mechanism of
induction of proinflammatory responses in HIV-1-infected microglia was not defined,
inflammatory responses were suppressed upon treatment with RT inhibitor (efavirenz)
(63). Differentiation protocols for iPSC-derived microglia in this recently published
study (63) were similar to those utilized for generation of iCell-MG (iCell microglia;
Fujifilm Cellular Dynamics) that we tested for this report. While the cytokine-driven dif-
ferentiation protocol generated iPSC-microglia with similar transcriptional profiles to
human primary microglia (36, 63), our results suggest that iCell-MGs express low levels
of P2RY12 on the cell surface, unlike primary human microglia (23, 41). Since the CNS
environment is critical for establishing and maintaining microglial cell identity (64), co-
culture-dependent terminal differentiation of iPSC-microglia, as described here and by
Takata et al. (39), may better model primary microglia in the brain.

Impact of innate immune activation on homeostatic functions of microglia. We
have shown that HIV-1 infection of microglia promotes microglia cell death and proin-
flammatory cytokine production in the hiMG-hiNeuron cocultures (Fig. 5), though sig-
nificant cytotoxicity of cocultured neurons was not observed at the time of harvest
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(6days p.i.). In contrast, a recent study using nonisogenic iPSC-derived microglia and
neurons (from independent lines) demonstrated that infected microglia induce neuro-
nal death, and damaged neurons induce activation of HIV-1 transcription in latently
infected microglia (65). These differences might be the result of a divergent experimen-
tal setup, as the hiMGs in this study were generated by coculturing hiMACs and
hiNeurons from the same iPSC-line, and infections of hiMGs were initiated in cocul-
tures. Further studies are needed to determine the effects of long-term coculture of
HIV-infected hiMGs and hiNeurons and the consequences of persistent HIV icRNA-
induced chronic inflammation on neuronal homeostasis. It has been shown that activa-
tion of microglia leads to dysfunctions such as defects in clearing neurotoxins, includ-
ing fibrilar amyloid B and Tau, and promoting a senescent phenotype in microglia
(reviewed in reference 14). Inclusion of other cell types which have been reported to
be HIV-1* in the CNS, such as astrocytes and perivascular macrophages (reviewed in
reference 66), in the hiMG-hiNeuron coculture might better mimic the brain environ-
ment. In addition, human iPSC-derived cerebral organoids with diverse cell types that
interact in a 3D environment are an attractive model to study HIV neuropathogenesis
in vitro (67). Future studies will need to assess the effects of persistent HIV-1 infection
on homeostatic functions of microglia and the contribution to neuronal dysfunction in
these three-dimensional (3D) cerebral organoid cultures. Finally, our findings highlight
the urgent need to develop novel therapeutic strategies targeting cytosolic HIV icRNA
expression to reduce HIV-induced neuroinflammation and incidence of HAND.

MATERIALS AND METHODS

Viruses. HIV-1 replication-competent molecular clones, Lai/YU-2env, single-round reporter virus con-
structs, LaiAenvGFP (green fluorescent protein [GFP] in place of the nef orf), and Rev-deficient
LaiAenvGFP-M10, have been described previously (8, 68, 69). Replication-competent viruses were derived
from HEK293T cells via calcium phosphate-mediated transient transfection (70). Single-round-replication-
competent viruses pseudotyped with VSV-G were generated from HEK293T cells via cotransfection of HIV-
1Aenv proviral plasmids and VSV-G expression plasmid and the packaging construct (psPAX2), if necessary
(70). SIV,,.. Vpx-containing VLPs were generated from HEK293T cells via cotransfection of SIV3", an SIV
packaging plasmid containing SIV, .5, Vpx (29), and VSV-G expression plasmid. Virus-containing cell
supernatants were harvested 2days posttransfection, cleared of cell debris by centrifugation (300 x g,
5min), passed through 0.45-um filters, and purified and concentrated by ultracentrifugation on a 20% su-
crose cushion (24,000 rpm and 4°C for 2 hours with an SW32Ti or SW28 rotor [Beckman Coulter]). The virus
pellets were resuspended in phosphate-buffered saline (PBS), aliquoted, and stored at —80°C until use.
The capsid content of HIV-1 was determined by a p24929 ELISA (70), and virus titer was measured on TZM-
bl by measuring B-galactosidase (3-Gal) activity as previously described (71).

Cell culture. HEK293T (ATCC) and TZM-bl (NIH AIDS Reagent Program) were maintained in Dulbecco
modified Eagle medium (DMEM) (Gibco) containing 10% heat-inactivated fetal bovine serum (FBS)
(Gibco) and 1% pen/strep (Gibco) (37, 70, 72). THP-1 (NIH AIDS Reagent Program) was maintained in
RPMI 1640 (Gibco) containing 10% FBS and 1% pen/strep (73). In some experiments, THP-1 cells were
stimulated with phorbol myristate acetate (PMA) (Sigma-Aldrich) for 48 hours at 100 nM. All cell lines
were tested for mycoplasma contamination and confirmed negative. Human iPSC-derived microglia
were either purchased (iCell microglia; Fujifilm Cellular Dynamics) or generated by us (hiMG, see below).
iCell microglia (iCell-MG) were maintained per the manufacturer’s instructions. All the reagents used to
maintain iCell-MG are listed as follows: DMEM/F-12, HEPES no phenol red (Gibco; catalog no. 11039021),
B-27 supplement (Gibco; catalog no. 17504044), GlutaMAX supplement (Gibco; catalog no. 35050061),
insulin-transferrin-selenium (Gibco; catalog no. 41400045), minimal essential medium (MEM) nonessen-
tial amino acids (Gibco; catalog no. 11140050), penicillin-streptomycin (Gibco; catalog no. 15140122), N-
2 supplement (Gibco; catalog no. 17502048), bovine serum albumin (Sigma-Aldrich; catalog no. A1470),
recombinant human CD200 (ACRO Biosystems; catalog no. OX2-H5228), recombinant human IL-34
(PeproTech; catalog no. 200-34), recombinant human fractalkine (PeproTech; catalog no. 300-31), human
insulin solution (Sigma-Aldrich; catalog no. 19278), human transforming growth factor-g1 (TGF-B1)
(Miltenyi Biotec; catalog no. 130-095-066), ascorbic acid (Sigma-Aldrich; catalog no. A8960), recombinant
human macrophage colony stimulating factor (M-SCF; PeproTech; catalog no. 300-25), and 1-thiogly-
cerol (MTG) (Sigma-Aldrich; catalog no. M6145).

Generation of monocyte-derived microglia-like cells and macrophages. To generate monocyte-
derived microglia (MDMG), CD14" peripheral blood monocytes positively isolated with CD14 microbe-
ads (Miltenyi Biotec) (68) were seeded on Geltrex-coated (Gibco) tissue culture plates and cultured for
12 to 14days in RPMI 1640 Glutamax (Gibco) supplemented with 1% pen/strep, 100 ug/ml of IL-34
(PeproTech), and human GM-CSF (10ng per ml; Miltenyi Biotec). Human monocyte-derived macro-
phages (MDMs) were derived from CD14" peripheral blood monocytes by culturing in RPMI 1640
(Gibco) containing 10% heat-inactivated human AB serum (Sigma-Aldrich), and recombinant human M-
CSF (20 ng per ml; PeproTech) for 5 to 6 days and maintained in the same medium.
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Generation of human iPSC-derived cells. Human iPSCs were generated from human peripheral
blood mononuclear cells (PBMCs) by using the STEMCCA polycistronic lentiviral vector (74, 75) followed
by the removal of integrated reprogramming cassette using Cre recombinase (76) and were maintained
in mTeSR1 medium (Stemcell Technologies). Human iPSC-derived primitive macrophages (hiMacs) were
generated as previously reported (Fig. 4A) (39). Briefly, human iPSC colonies were specified to the meso-
derm and induced into hemangioblast and toward hematopoietic precursors followed by differentiation
into primitive macrophages by changing the culture medium every 2 to 4 days. After differentiation (day
26), floating cells were collected and used for fluorescence-activated cell sorting (FACS) as described
below. In parallel, human iPSC-derived neurons (hiNeurons) were generated from the same batch of
iPSCs as previously reported (39). Human iPSCs were dissociated to single cells, plated onto Matrigel-
coated 6-well plates, and differentiated into neuronal progenitors (NPCs). NPCs were terminally differen-
tiated into hiNeurons. To generate iPSC-derived microglia cells (hiMGs), CD45" CD11b* CD163* CD14*
CX3CR1* hiMacs were sorted by FACS as described below and cocultured with terminally differentiated
hiNeurons for 14 days. All the reagents used to generate iPSC-derived cells are listed as follows: mTeSR
(Stemcell Technologies; catalog no. 85850), ReLeSR (Stemcell Technologies; catalog no. 05872), DMEM/
F-12, HEPES (Gibco; catalog no. 11330057), Iscove’s modified Dulbecco’s medium (IMDM; Gibco; catalog
no. 12440061), Stempro-34 serum-free medium (SFM; Gibco; catalog no. 10639-011), neurobasal (Gibco;
catalog no. 21103049), PBS (Gibco; catalog no. 14190-144), Ham's F-12 nutrient mix (Gibco; catalog no.
11765054), N2 supplement (Gibco; catalog no. 17502048), B-27 supplement, serum free (Gibco; catalog
no. 17504044), B27 minus vitamin A (Gibco; catalog no. 12587010), bovine albumin fraction V (7.5% solu-
tion) (Gibco; catalog no. 15260037), primocin (InvivoGen; catalog no. ant-pm-2), GlutaMax (Gibco; cata-
log no. 35050061), laminin (Gibco; catalog no. 23017-015), Matrigel hESC-qualified matrix (Corning; cata-
log no. 354277), Matrigel membrane matrix (Corning; catalog no. 354234), poly-L-ornithine solution
(Sigma-Aldrich; catalog no. P4957), laminin mouse protein, natural (Gibco; catalog no. 23017015), human
transferrin (Roche; catalog no. 10-652-202-001), glutamic acid (Sigma-Aldrich; catalog no. G1251), ascor-
bic acid (Sigma-Aldrich; catalog no. A4544), SB431542 (Tocris; catalog no. 1614), Y27632 (Rho-associated
protein kinase [ROCK] inhibitor) (Stemgent; catalog no. 04-0012-02), MTG (Sigma-Aldrich; catalog no.
M6145), Accutase (Gibco; catalog no. A1110501), polyornithine (Sigma-Aldrich; catalog no. P4957),
CHIR99021 (Tocris; catalog no. 4423/10), y-secretase inhibitor XXI, compound E (Millipore; catalog no.
565790), recombinant human brain-derived neurotrophic factor (BDNF; R&D Systems; catalog no. 248-
BD), recombinant human glial cell line-derived neurotrophic factor (GDNF; R&D Systems; catalog no.
212-GD), recombinant human BMP-4 (R&D Systems; catalog no. 314-BP), recombinant human vascular
endothelial growth factor (VEGF; R&D Systems; catalog no. 293-VE), recombinant human EGF (R&D
Systems; catalog no. 236-EG), recombinant human fibroblast growth factor 2 (FGF2) (R&D Systems; cata-
log no. 233-FB), recombinant human stem cell factor (SCF; R&D Systems; catalog no. 255-SC), recombi-
nant human DKK-1 (R&D Systems; catalog no. 5439-DK), recombinant human IL-3 (R&D Systems; catalog
no. 203-IL), recombinant human IL-6 (R&D Systems; catalog no. 206-IL), and recombinant human M-CSF
(R&D Systems; catalog no. 216-MC).

Infection. Cells were spinoculated with HIV-1 (1 h at room temperature [RT] and 1,100 x g) at vari-
ous multiplicities of infection (MOI, typically 0.5 to 2), cultured for 2 to 3 h at 37°C, washed to remove
unbound virus particles, and cultured for 3 to 6days. Infection was quantified by analyzing p24%9
released into the culture supernatants or GFP expression by flow cytometry (BD LSRII). In some experi-
ments, cells were pretreated prior (at least 30 min) to infection with efavirenz (1 «M; NIH AIDS Reagent
Program), raltegravir (30 uM; Selleck Chemicals), or treated 2 to 3 h postinfection (p.i.) with KPT-330
(1 uM, selinexor; Selleck Chemicals), or KPT-335 (0.1 uM, verdinexor; Selleck Chemicals). DMSO (Sigma-
Aldrich) was used as a vehicle control.

RNA analysis. Total mRNA was isolated from 0.5 x 10° to 1 x 10° cells using an RNeasy kit (Qiagen)
and reverse-transcribed using oligo(dT),, primer (Superscript Ill; Invitrogen). Target mRNA was quanti-
fied using Maxima SYBR green (Thermo Scientific) using the following primer sets: P2RY12 (forward: 5'-
CTTTCTCATGTCCAGGGTCAG-3', reverse: 5-CTGCAGAGTGGCATCTGGTA-3’) and GAS6 (forward: 5'-
CCTTCCATGAGAAGGACCTCGT-3/, reverse: 5'-GAAGCACTGCATCCTCGTGTTC-3'). Primer sequences for
GAPDH, HIV spliced RNA, and IP-10 were described previously (72). For hiMG-hiNeuron coculture, target
mRNA was quantified using TagMan universal PCR master mix (Thermo Fisher Scientific) and the follow-
ing primer/probe sets: Hs99999905_m1 (GAPDH), Hs01922583_s1 (CX3CR1), Hs01881698_s1 (P2RY12),
and Hs01881698_s1 (P2RY12). The threshold cycle (C;) value was normalized to that of GAPDH and rep-
resented as a relative value to a control using the 2"24<. method as described (72, 77). NanoSting analy-
sis was performed using a human neuroinflammation kit and total RNAs (100 ng) isolated from MDMGs
per the manufacturer’s instructions.

ELISA. IP-10 and CCL2 production in culture supernatants was measured with a BD human IP-10
ELISA set and a BD human MCP-1/CCL2 ELISA set, respectively. To quantitate virus production, p24%29 in
culture supernatants was quantified by in-house ELISA (8).

Flow cytometry. To sort CD45" CD11b* CD163* CD14" CX3CR1* hiMacs, cells were stained with
fixable viability stain 780 (BD Bioscience; catalog no. 565388) followed by staining with a phycoerythrin
(PE)-conjugated mouse anti-human CD45 antibody (BD Biosciences; catalog no. 555483; 1:10), an allo-
phycocyanin (APC)-conjugated anti-human CD11b antibody (BioLegend; catalog no. 301410; 1:20), a
BV421-conjugated mouse anti-human CD14 antibody (BD Biosciences,; catalog no. 565283; 1:20), a fluo-
rescein isothiocyanate (FITC)-conjugated mouse anti-human CD163 antibody (BD Biosciences; catalog
no. 563697; 1:20), and a PerCP/Cy5.5-conjugated anti-human CX3CR1 antibody (BioLegend; catalog no.
341614; 1:20) in the presence of human Fc blocker (BD Bioscience; catalog no. 564220). Stained cells
were sorted with Beckman Coulter MoFlo Astrios. To examine microglia activation, iCell-MGs or hiMG-
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hiNeuron cocultures were harvested with Cellstripper (Corning) and stained with Zombie-NIR
(BioLegend; catalog no. 423105; 1:250) followed by staining with a BV421-conjugated mouse anti-
P2RY12 antibody (BioLegend; 1:50) in the presence of human Fc blocker (BD Bioscience; catalog no.
564220). Cells were fixed with 4% paraformaldehyde (PFA) (Boston Bioproducts) for 30 min and perme-
abilized with Perm/Wash (BD Biosciences), and intracellular p24%29 expression was detected as described
(72) using an FITC-conjugated mouse anti-p24%29 monoclonal antibody (KC57; Coulter; catalog no.
6604665; 1:25). As for iCell-MGs, cell surface CD169 expression was also analyzed using a BV605-conju-
gated mouse anti-CD169 antibody (BioLegend; 1:50). Intracellular tubulin B3 in the hiMG-hiNeuron co-
cultures was analyzed with an Alexa 549- or 647-conjugated mouse anti-tubulin 83 antibody (TUJ-1;
BioLegend; 1:50). Cells were analyzed with BD LSRIl (BD). Data were analyzed with FlowJo software
(FlowJo).

Imaging. For MDMGs and iCell-MGs, cells cultured in coverslip chambers (LabTekll) were washed
and fixed with 4% paraformaldehyde. Cells were then permeabilized with 0.1% TritonX100 and stained
with a rabbit anti-P2RY12 antibody (Sigma-Aldrich; HPA014518; 1:100) or a rabbit anti-IBA1 antibody
(Fujifilm Wako; catalog no. 019-19741; 1:250). Cells were then stained with Alexa594-conjugated anti-
rabbit-IgG antibody (Invitrogen; catalog no. A-11072; 1:200) and DAPI (4’,6-diamidino-2-phenylindole;
Sigma-Aldrich). Cells were analyzed with a Nikon SP5 confocal microscope. hiMG-hiNeuron coculture
was fixed, permeabilized, and stained with a mouse anti-beta-tubulin Ill antibody (clone TUJ1; Stemcell
Technologies; catalog no. 60052; 1:1000) and a rabbit polyclonal anti-TMEM119 antibody (Novus
Biologicals; catalog no. NBP2-30551; 0.25-2 ug/ml) or a goat anti-IBA-1 antibody (Abcam; catalog no.
ab5076; 1:500), followed by an Alexa Fluor 488-conjugated donkey anti-mouse IgG (Invitrogen; catalog
no. A21202; 1:500) and an Alexa Fluor 594-conjugated goat anti-rabbit IgG (Invitrogen; catalog no.
A11012; 1:500) or an Alexa Fluor 594-conjugated rabbit anti-goat IgG (Invitrogen; catalog no. A11080;
1:500), respectively, and DAPI (NucBlue; Invitrogen). Cells were analyzed with a Keyence BZ-X710 all-in-
one fluorescence microscope. Images were analyzed with ImageJ (NIH).

Immunoblot analysis. To assess expression of host proteins, cell lysates containing 15 to 30 ug total
protein were separated by SDS-PAGE and transferred to nitrocellulose membranes, and the membranes
were probed with the following antibodies: a mouse anti-SAMHD1 antibody (Abcam; catalog no.
ab67820; 1:1,000) or a rabbit anti-phosphorylated (Thr 592) SAMHD1 antibody (Cell Signaling; catalog
no. 15038; 1:1,000) and specific staining visualized with secondary antibodies, goat anti-mouse-IgG-
DyLight 680 (Pierce), or a goat anti-rabbit-lgG-DyLight 800 (Pierce). As loading controls, actin expression
was probed using a rabbit anti-actin antibody (Sigma-Aldrich; A2066; 1:5,000). Membranes were scanned
with an Odessy scanner (Li-Cor).

Statistics. All the statistical analysis was performed using GraphPad Prism 8. P values were calcu-
lated using one-way analysis of variance (ANOVA) followed by the Tukey-Kramer posttest (symbols for P
values shown with a line) or Dunnett’s posttest (comparing to mock, symbols for P values shown on
each column), One sample t test (comparing two samples, symbols for two-tailed P values shown with a
line) or a Wilcoxon signed rank test (comparing two samples, symbols for two-tailed P values shown
with a line). *, P < 0.05; **, P<0.01; ***, P < 0.001; ****, P < 0.0001. No symbol: not significant (P = 0.05).

Data availability. We declare that the data that support the findings of this study are available
within the paper and from the corresponding author upon reasonable request.
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